最近加入的商品:

    0 件商品 合计 0

    新闻资讯

    精彩资讯,与您分享

    Biotechnology Bulletin | Zhejiang University Research Team Summarizes the Application of Yeast Surface Display Technology in Protein Engineering


    Yeast cell surface display
    Yeast cell surface display technology has become an important tool in protein engineering research. By using this technology, protein interactions can be identified, protein affinity and specificity can be improved, protein stability and expression level can be increased, functional antigen maps can be drawn, and bioactive proteins and enzymes can be immobilized. The application of this technology represents the latest progress in protein engineering research.

     

    12

     

    Yeast cell surface display technology is a rapidly developing eukaryotic protein expression system in recent years. Its basic principle is to fuse foreign target protein genes (foreign proteins) with specific vector gene sequences and introduce them into yeast cells. The mechanism of transporting yeast intracellular proteins to the membrane surface enables target proteins to be immobilized and expressed on the surface of yeast cells. It has broad application prospects in various industrial fields such as medicine, food, and biofuels. The most common yeast surface display expression systems currently include lectin display expression and flocculent display expression.

     

    Immobilization of proteins

    The immobilization technology of proteins is an important aspect of protein engineering. By using yeast surface display and expression technology, the target protein or enzyme is immobilized on the surface of yeast cells, which can improve the stability and reusability of the protein or enzyme without the need for complex separation and purification of the protein. Kuroda et al α- The fusion of lectin fragments is displayed on the surface of yeast cells for chelation and biosorption of toxic heavy metal cadmium ions. The adsorption effect of cadmium ions and the tolerance of yeast engineering bacteria to cadmium depend on the amount of displayed expressed proteins. Shibasaki et al. co cultured the yeast displaying the ZZ domain on the surface with the engineered yeast containing the lipase or green fluorescent protein of the fused Fc fragment, and found that the fusion protein can be effectively recycled by the ZZ domain displayed on the yeast surface. Furukawa et al. used Flo1p to display Streptomyces ovalbumin on the surface of Saccharomyces cerevisiae. The protein showed the ability to bind biotinylation complexes. Therefore, the displayed yeast cells can be widely used as whole cell affinity agents in immunoassay and biosensor research. In addition, yeast surface display antigen technology has also been reported as a preventive or therapeutic vaccine.

     

    Recognition of protein interactions


    Exploring the interactions between proteins in organisms is an important aspect of protein engineering and the key to revealing the mechanisms of various diseases and even life phenomena. Yeast display technology provides a research platform for people to study the interactions between natural proteins. Bidlingmaier et al. identified several unreported protein molecules that can interact with EGFR or focal adhesion kinase through tyrosine phosphorylation by displaying a human cDNA library and expressing it on the surface of yeast cells using phosphorylated peptides to screen the protein library on the yeast surface. Research has shown that using a human protein library constructed on the surface of yeast can not only be used for post translational modification analysis, but also for identifying target molecules and identifying unknown proteins that cross react with drugs or small molecules.

     

    1

     

    YongKuCho et al. recently reported a yeast display fluorescence preparation (YDIP) technique that utilizes scFv to be displayed on the surface of yeast cells as an affinity agent for the separation and identification of soluble and membrane antigens. In addition, some research groups have used yeast display technology to isolate new antibodies that can bind to multiple target proteins from immune or non immune scFV libraries.

     

    Improve protein stability and expression levels
    The thermal stability and expression level are important indicators for measuring the practical application of a protein. The stability of the protein determines its storage effectiveness, while the expression level affects the production cost of the protein. Shusta et al. fused several mutant single chain T cell receptors (ScTCR) with lectin (Aga2p) and displayed the expression on the surface of yeast. The results showed that the thermal stability of ScTCR mutants was related to the level of display expression and secretion expression. The yeast display technology could be used as a directed evolution tool to identify the stability and secretion characteristics of mutant proteins.


    Mapping protein epitopes
    Identifying key amino acids that mediate protein-protein interactions helps people understand biochemical processes and protein design, while yeast display technology can identify these key amino acid residues in a systematic and large-scale manner. Chao et al. constructed a yeast surface display library using EGFR and some anti EGFR antibody antigens, and obtained a high-resolution table map that can recognize amino acids through screening.


    Expectation
    Cell surface display technology has become an important tool in protein engineering research, which can be used to selectively modify target proteins and is widely used in protein separation and purification, protein immobilization, protein interactions, and other fields. Yeast is an eukaryotic organism that utilizes yeast as a host to display and express various proteins, making it possible for people to study and manipulate complex eukaryotic proteins. Although there are differences in glycosylation structures between yeast and mammals, it is imperative to develop a human cell surface display system. However, currently, the yeast system is still the most suitable system for eukaryotic protein expression. For important proteins that do not have significant glycosylation differences, using the yeast system for expression can still serve as an alternative method for processing human protein glycosylation processes.

     

     

     

     

    相关新闻


    写评价,得奖品

    写评价,得奖励


    更低假阳性概率的蛋白互作研究技术——免疫共沉淀Co-IP

    免疫共沉淀(Co-Immunoprecipitation,Co-IP)是以抗体和抗原之间的专一性作用为基础的用于研究蛋白质相互作用的经典方法,用于确定两种蛋白质在完整细胞内生理性相互作用。与其他蛋白互作研究技术,比如酵母双杂、Pull-down等各有优势,其中Co-IP基于抗原和抗体之间结合,可以从复杂的细胞裂解液中特异性地分离和鉴定蛋白质复合体,对于理解蛋白质如何在细胞内相互作用以及它们如何影响细胞功能和信号传导至关重要。


    Science | 拟南芥ABC转运蛋白ABCB19参与油菜素内酯外排的结构和功能

    油菜素甾醇类激素BR被称为第六大类植物激素。它可以调控植物生长发育,还可以提高植物对干旱、盐碱等环境以及病虫害胁迫的适应性。油菜素甾醇及其人工合成类似物在农业生产中有着广泛应用,可显著提高作物产量和抗逆性。


    关于纳米抗体你知道多少?

    抗体(antibody)是指机体由于抗原的刺激而产生的具有保护作用的蛋白质。它是一种由四条多肽链链接组成的Y型蛋白。 其中两条相对分子质量更大的链为重链,另外两条链则为轻链。每条链有一端为C端,一端为N端,分析抗体四条练链的序列可以发现,在靠近N端的约110个氨基酸序列会存在明显变化,称为可变区,而其他位置的序列则会表现出相对恒定,称为恒定区。


    AI算法“洞悉”蛋白结构,预测蛋白互作

    蛋白质作为生命系统的核心构成要素,蛋白质结构是其功能的决定性因素,一般来说,蛋白质并不是单独发挥作用的,而是通过彼此之间发生相互作用,即蛋白质-蛋白质相互作用(PPI)来完成相应的任务。随着人工智能技术的飞速发展,深度学习和机器学习在蛋白质结构预测及互作预测领域得到了广泛应用。 AI在蛋白质组学领域的应用大致可以分为三个方面:蛋白质结构预测、蛋白质互作预测、蛋白质互作置信度分析。


    酵母分泌信号肽功能验证系统助力信号肽研究

    酵母信号肽筛选系统是一种常用的验证信号肽功能的系统,在这个系统中,通过将含有预测信号肽基因的质粒转入酵母菌中。在信号肽能发挥作用的情况下,报告蛋白将会分泌,可以直观快速的验证信号肽功能。